6,875 research outputs found

    Lacunary Fourier series and a qualitative uncertainty principle for compact Lie groups

    Get PDF
    We define lacunary Fourier series on a compact connected semisimple Lie group GG. If fL1(G)f \in L^1(G) has lacunary Fourier series, and vanishes on a non empty open set, then we prove that ff vanishes identically. This may be viewed as a qualitative uncertainty principle

    Support theorem on R^n and non compact symmetric spaces

    Get PDF
    We consider convolution equations of the type f * T = g where f, g are in L^p(R^n) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T we show that f is compactly supported, provided g is. Similar results are proved for non compact symmetric spaces as well

    Asymptotics of Harish-Chandra expansions, bounded hypergeometric functions associated with root systems, and applications

    Full text link
    A series expansion for Heckman-Opdam hypergeometric functions φλ\varphi_\lambda is obtained for all λaC.\lambda \in \mathfrak a^*_{\mathbb C}. As a consequence, estimates for φλ\varphi_\lambda away from the walls of a Weyl chamber are established. We also characterize the bounded hypergeometric functions and thus prove an analogue of the celebrated theorem of Helgason and Johnson on the bounded spherical functions on a Riemannian symmetric space of the noncompact type. The LpL^p-theory for the hypergeometric Fourier transform is developed for 0<p<20<p<2. In particular, an inversion formula is proved when 1p<21\leq p <2

    A continuum treatment of growth in biological tissue: The coupling of mass transport and mechanics

    Full text link
    Growth (and resorption) of biological tissue is formulated in the continuum setting. The treatment is macroscopic, rather than cellular or sub-cellular. Certain assumptions that are central to classical continuum mechanics are revisited, the theory is reformulated, and consequences for balance laws and constitutive relations are deduced. The treatment incorporates multiple species. Sources and fluxes of mass, and terms for momentum and energy transfer between species are introduced to enhance the classical balance laws. The transported species include: (\romannumeral 1) a fluid phase, and (\romannumeral 2) the precursors and byproducts of the reactions that create and break down tissue. A notable feature is that the full extent of coupling between mass transport and mechanics emerges from the thermodynamics. Contributions to fluxes from the concentration gradient, chemical potential gradient, stress gradient, body force and inertia have not emerged in a unified fashion from previous formulations of the problem. The present work demonstrates these effects via a physically-consistent treatment. The presence of multiple, interacting species requires that the formulation be consistent with mixture theory. This requirement has far-reaching consequences. A preliminary numerical example is included to demonstrate some aspects of the coupled formulation.Comment: 29 pages, 11 figures, accepted for publication in Journal of the Mechanics and Physics of Solids. See journal for final versio

    Biological remodelling: Stationary energy, configurational change, internal variables and dissipation

    Full text link
    Remodelling is defined as an evolution of microstructure or variations in the configuration of the underlying manifold. The manner in which a biological tissue and its subsystems remodel their structure is treated in a continuum mechanical setting. While some examples of remodelling are conveniently modelled as evolution of the reference configuration (Case I), others are more suited to an internal variable description (Case II). In this paper we explore the applicability of stationary energy states to remodelled systems. A variational treatment is introduced by assuming that stationary energy states are attained by changes in microstructure via one of the two mechanisms--Cases I and II. An example is presented to illustrate each case. The example illustrating Case II is further studied in the context of the thermodynamic dissipation inequality.Comment: 24 pages, 4 figures. Replaced version has corrections to typos in equations, and the corresponding correct plot of the solution--all in Section
    corecore